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Corso di Metodi Applicati per la Valutazione dei Servizi in Economia e Finanza 

-Applied Methods for Services Evaluation in Economics and Finance- 

SEF-LM56. a.a. 2021-22 

 

See “How Do we Know if a Program Made a Difference” Section 2.1 

 

The focus of this course is to study the evaluation methods of policy interventions associated with 

welfare programs, training programs, wage subsidy programs, and tax credit programs. 

 

The aim of program impact evaluation is to learn whether and to what degree a program 

influenced the outcomes from what otherwise might have been happen. 

 

Our reasoning is based on the convincement that the heart of the program evaluation is a missing 

data problem. An individual may either be subject to the policy intervention or he/she may not, but 

no one individual can be in both states simultaneously. 
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In this context, there would be no evaluation problem if we could observe the counterfactual 

outcome for those included in the program such as had they not participated 

 

The choice of evaluation method will depend on three broad concerns:  

 

-the nature of the question to be answered, 

 

-the type and quality of data available, 

 

-the mechanism by which individuals are allocated to the program or receive the policy.  

 

Last of these is typically labelled the "assignment rule" and will be a central component in the 

analysis we present. 
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Assignment Rule 

 

In a perfectly designed experiment, assignment should be random. In a structural microeconomic 

model, assignment is assumed to obey some rules from economic theory.  

Alternative methods exploit different assumptions concerning assignment and differ according to 

the type of assumption made. 

In general, we consider six distinct, but related each other, approaches:  

(i) social experiment methods,  

 

(ii) natural experiment methods,  

 

(iii) discontinuity design methods,  

 

(iv) matching methods,  

 

(v) instrumental variable methods,   

 

(vi) control function methods. 
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The Social Experiment method 

 

The social experiment method is the most convincing method of evaluation since it directly 

constructs a control (or comparison) group, which is a randomized subset of the eligible 

population. 

 

Since programs are typically voluntary, those individuals "randomized in" may decide not to 

participate in the treatment (no-compliers).  This circumstance may lead to the introduction of a 

non-random component into the composition of both treated and control groups.  The measured 

program impact will therefore take into account an "intention to undergo treatment" parameter. 

 

An example of a well-conducted social experiment is the Canadian Self Sufficiency Project (SSP), 

which was designed to measure the earnings and employment responses of single mothers on 

welfare to a time-limited earned income tax credit program. This study has produced relevant 

evidence on the effectiveness of financial incentives in inducing welfare recipients into work (see 

Card and Robbins, 1998). 

 

 



5 
 

 

 

The Natural Experiment approach 

 

The natural experiment approach attempts to find a naturally occurring comparison group that can 

mimic the properties of the control group in the properly designed experiment. This method is also 

often labeled "difference-in-differences" because it is usually implemented by comparing the 

difference in average behavior before and after the treatment (reform, intervention) for the eligible 

group with the before and after difference of a comparison group.  

 

The evaluation of the "New Deal for the Young Unemployed" in the United Kingdom is a good 

example of a policy design suited to this approach. It was an initiative to provide work incentives 

to unemployed individuals aged 18 to 24. The program is mandatory and was rolled out in selected 

pilot areas prior to the national roll out. The Blundell et al. (2004) study investigates the impact of 

this program by using similar 18-24 years old in nonpilot areas as a comparison group.  
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The Discontinuity Design method 

 

The discontinuity design method can also be classified as a natural experiment approach but one 

that exploits situations where the probability of enrollment into treatment changes discontinuously 

with some continuous variable. For example, where eligibility to an educational scholarship 

depends on parental income falling below some cutoff. 

 

 It turns out to be convenient to discuss this approach after studying the properties of the 

instrumental variable (IV) estimator, since the parameter identified by discontinuity design is a 

sort of "local" average treatment effect similar to the parameter identified by IV, but not 

necessarily the same. Our aim is to compare the IV and discontinuity-design approaches. 
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The Matching method 

 

The aim of matching is simple: to link individuals each other according to sufficient observable 

factors to remove systematic differences in the evaluation outcome between treated and untreated. 

For this "selection on observables" approach, a clear understanding of the determinants of 

assignment rule on which the matching is based is essential. 

 

The measurement of returns to education, where scores from prior ability tests are available in 

birth cohort studies, is a good example.  

 

As we document below, matching methods have been extensively refined and their properties 

examined in the recent evaluation literature, and they are now a valuable part of the evaluation 

toolbox. Lalonde (1986) and Heckman, Ichimura, and Todd (1998) demonstrate that experimental 

data can help in evaluating the choice of matching variables. 
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The Instrumental Variable (IV) approach 

 

The instrumental variable (IV) method is a standard econometric approach to control for 

endogeneity. It relies on finding one or more variables excluded from the outcome equation but 

which may be determinant of the assignment rule (moment conditions).  

 

These variables (instruments) serves to randomly identify the selection of an individual into the 

treatment. 

 

Work by Imbens and Angrist (1994) and Heckman and Vytlacil (1999) provided an ingenious 

interpretation of the IV estimator in terms of local treatment effect parameters. We will discuss 

these developments. 
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The Control Function method 

 

The control function (CF) method directly characterizes the choice problem facing individuals 

deciding on program participation.  

 

It is, therefore, closest to a structural microeconomic analysis. It uses the full specification of the 

assignment rule together with an excluded "instrument" to derive a control function which, when 

included in the outcome equation, controls for endogenous selection. This approach relates directly 

to the selectivity estimator of Heckman (1979). 

 

In particular, given a more general Two-Regime model: 

yi = d(x’i)+(1-d)(x’i)+ui,    

d=1 indicates that the subject is undergone to treatment; d = 0 indicates, at the opposite, that the 

subject is not undergone to treatment. 

 

The control function estimator (CF) considers the endogeneity of the treatment indicator, d, as a 

censored variable problem. 
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Treatment Effect Parameters 

 

We now begin to consider some of the various types of program impact that might be of interest. 

Following conventional terminology, first, we havethe Average Treatment Effect (ATE): 

E(y1i-y0i)               (1) 

 

where E(…) is the expectations operator. The subscript 1 or 0 indicates, respectively, if the subject 

belongs to treated regime or to untreated regime. The Average Treatment Effect is the average 

impact of the program across all of the individuals in thepopulation of interest.  

Treatment effects can be also conditional to some (observed) covariates. Then the “conditional” 

ATE effect is given by the following expected value: 

E(y1i-y0i)|x’i              (2) 
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Another common parameter of interest is the Average Effect of Treatment on the Treated 

(ATT): 

E(y1i-y0i)|di=1;x’i             (3) 

 

This is the impact of the program on those actually exposed to the program( di = 1). 

  

A third usual parameter is the is the Average Effect of Treatment on the Untreated (ATU): 

E(y1i-y0i)|di= 0;x’i             (4) 

 

This is the hypothetical impact of the program on those actually are not exposed to the 

program (1-di = 0) as if they had been treated. 
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Brief recalls on basic preparatory topics 

Truncated normal standard random variable(Johnson and Kotz, 1970; Maddala, 1983; 

Verbeek, 2017). 

Let z = (x-)/ a “left truncated” normal standard random variable, with z0 as truncation point. 

We have the following pdf function (observed): 

( )
( )

( )0

01

z
z z z

z


  =

−               (1) 

and expected value:  
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 In the case of right truncation, we have: 
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pdf function:  

( )
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             (3)    

and expected value:   

( )
( )

( )
0
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E z z z

z

−
 =

             (4) 

Note how the generalized residuals of Probit estimation in the two regimes are similar to the 

values of the density function of the observed part of two truncated standard normals, respectively 

to the right and to the left of the same truncation point. 
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Estimation of Logit and Probit models 

Let’s assume that the latent (continuous) variable y*
i  (given, for instance, by the propensity of a 

subject to be employed) is defined by the regression relationship:   

ii
*
i uy += βx'            (1) 

In practice, y*
i  is unobservable.  What we observe is a response (dummy) variable yi defined by: 

yi = 1   if    y*
i> 0 

yi = 0   otherwise 

from the Eq. (1), we get:  

Pr(yi = 1) = Pr( ) ( ) ( )βx'βx'βx' iiii FFu =−−=− 1     (2) 

analogously, we have: 

Pr(yi = 0) = ( )βx'iF−1          (3) 

 

Hence, we specify the Likelihood function for both Logit and Probit: 

( ) ( ) ( ) ( ) ( )
1

1 0

; 1 1 max
i

yy

i i i i i

y y y

L u F F F F
−

= =

= − = − =        β x' β x' β x' β x' β      (4) 

while the Log-likelihood function is: 
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( ) ( ) ( ) ( ) ln ; ln 1 ln 1 maxi i i i i

n

L u y F y F= + − − =  β x' β x' β         (5) 

and the Score function is given by: 

SCORE=
( ) ( )  ( )

( ) ( ) 
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1
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If the cdfF( ) = ( )  is a Normal Standard, as in a Probit model, we have: 
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and the Score function is: 
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The part of the Score function of Probit model included in brackets {..} is known as “Generalized 

Residual” (GR). If the subject experienced the event, choosing the regime yi =1, the value of GR is 

obtained by substituting yi =1 into 
( ) ( )

( ) ( )1

i i i

i i

y −   

 −   

x' β x' β

x' β x' β
: 
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( )

( )1

i

yi

i

GR


= =


x' β

x' β                (8) 

At the opposite, if the subject did not experience the event, choosing the regime yi =0, the value of 

GR is obtained by substituting yi = 0: 

( )

( )
0

1

i

yi

i

GR


=

−
=

− 

x' β

x' β               (9) 
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Report in a table the number of both predicted and observed values of yi: 

 

 

 

  
 

   
  

 

  

   0 1 Tot 

yi 
0 00n̂  01n̂  n0 

1 10n̂  11n̂  n1 

   
  

n 

 

  

5.0ˆ1 iy5.0ˆ0 iy

1̂n0n̂
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Censored Regression - Tobit II model 

 

In this regression model, the (partial) observability of the dependent variable, yi, depends on 

another variable, di
*, only observed in a dichotomous form, such as dummy (di= 0; 1) with 0 and 

1= corner solutions. In practice,  yi is observed if di =1;  yi is censored if di = 0. 

 

In addition, the realization of di
* endogenously depends on the level of yi, as in the case of the 

wage equation, in which the wage,yi, is observable only if the subject is employed (di = 1), and 

censored if the subject is not employed (di = 0). On the other hand, the decision to be employed 

depends also on the level of yi. 

This model can be specified as follows: 

( )

( )

* 2

*

0;

0;1

i i i i

i i i i

y u u N

d v v N

= +

= +

x' β

z' γ          (10)   

*

i i iy u= +x' β  is the “outcome” equation, while  
*

i i id v= +z' γ  is the “selection” equation. 
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Censoring rule: 

yi
*>0  ifdi= 1  and di= 1  if  di

*> 0  

yi
*= 0  ifdi

*= 0   and di= 0  if  di
* = 0 

 

Error terms are related each one according to the following covariance matrix: 

2

1

uv

uv

 



 
 =  

 
             (11) 

Where the covariance  uv is a measure of endogeneity of censoring. In particular, we assume that 

error terms relation may be specified adopting a linear combination such as:  

0i uv i i iu v IID with mean  = + =        (12) 

Given the conditional expected value of the partially observed  dependent variable yi
*: 

( ) ( ) ( ) ( ) ( )* * * *1 0 ' 0 ' ' ' 'i i i i i i i i uv i i iE y d E y d E y v E u v E v v = =  = +  = +  − = + +  −i i i i iz γ x β z γ x β z γ

                   (13) 

and 
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( ) ( ) ( ) ( )' ' ' ' ' 'uv i i i i uv i i i iE v v E v E v v E v   + +  − =  − +  − +  −i i i i i ix β z γ x β z γ z γ z γ    

Considering 'ix β  as a deterministic component of the outcome equation, and i as an independent 

and unconditioned random disturbance, we obtain, as a result: 

( ) ( ) ( )* 1 ' ' ' 'i i uv i i uv i iE y d E v v E v v = = +  − = +  −i i i ix β z γ x β z γ       (14) 

 

vi is a normal standard random variable, left truncated in -zi’ Applying the Johnson-Kotz 

theorems, we have: 

( ) ( )
( )

( )

( )

( )
*

' '
1 ' ' ' '

1 ' '
i i uv i i uv uvE y d E v v

 
  

−
= = +  − = + = +

−  − 

i i

i i i i

i i

z γ z γ
x β z γ x β x β

z γ z γ   (15) 

Adopting the same rationale, we derive the expected value of yi under right censoring: 

 

( ) ( )
( )

( )

( )

( )
*

' '
0 ' ' ' '

' 1 '
i i uv i i uv uvE y d E v v

 
  

− − −
= = +  − = + = +

 − − 

i i

i i i i

i i

z γ z γ
x β z γ x β x β

z γ z γ  (16) 
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The ratios
( )

( )

ˆ

ˆ

i

i





z' γ

z' γ  and 
( )

( )

ˆ

ˆ1

i

i

−

− 

z' γ

z' γ can be considered as correction terms for endogeneity due, 

respectively, to left and right censoring in dependent variable.  

 

Following the Heckman approach (Heckman, 1979), we can adopt a simple two stage estimation 

procedure. 

For example, in estimating Equation (15), at a first stage we derive the generalized residuals, 

( )

( )

ˆ

ˆ

i

i





z' γ

z' γ , estimating by Probit the selection equation 
*

i i id v= +z' γ . 

At a second stage we estimate by OLS the outcome equation, only on the sub-sample di =1, 

introducing the generalized residuals as an additional regressor, to correct the estimates for the 

endogeneity of the censoring: 

( )

( )

ˆ'ˆˆ ˆ
ˆ'

i

i i uv

i

y


= +


z γ
x' β

z γ             (17) 
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INSTRUMENTAL VARIABLES (IV) ESTIMATOR 

 

Linear Model:   y = X+u 

y
1n

 =vector of the dependent variable ; X
kn

= matrix of k-1 explanatory variables plus a constant ; β
1k

= vector of 

kcoefficients ; u
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= vector of errors  

1
1

1

...

...
...

1

1

1

1

1

1

...

............

...

............

...

...

...

...

2

1

0

1

2

1

1;21

1;21

1;22221

1;11211

2

1






























+

















































=

























−

−

−

−

−

n
k

knn

n

i
k

knnn

kiii

k

k

n

i

u

u

u

u

xxx

xxx

xxx

xxx

y

y

y

y

u
β

Xy









error terms distribution:  uN(0; 2I) 

Where 2I is a n x n covariance matrix:  
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I omoskedastic and uncorrelated errors.  

In addition, the conditionE(X’u)=0  is assumed, and implies that the regressors matrix, X, is not 

stochastic or, at least, not correlated with the errors. For this reason, the column-vectors included 

as explanatory variables in X, are considered as “exogenous”.  

Specifying the model for a single i-th observation, we have : 

yi = x’i+ui, with uiN(0; 2) 

where x’i is a i-th row vector of the matrix X,  

while the scalar product  x’i is equal to  1xi1 + 2xi2 + …+jxij +…+k-1xi;k-1+ 0,     

 

The results of Standard OLS regression are based on the assumption thatE(xijui)=0. 

Namely, the regressors are not correlated with the errors:cov(xijui)=0   
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The assumption E(X’u)=0  (or E(xijui)=0) involves that the only the effect of  xij on  yi  is a “direct 

effect” via the term x’i as represented in the following path analysis diagram: 

 

 

 

 

Where there is no association between xijandui. So xijandui   are independent causes of  yi. 

However, in some situations there may be an association between regressors and errors.  

 

For example, consider the regression of individual earnings function (yi ). Education is included as 

a regressor, and it is measured by years of schooling (xij ). The error term, ui, includes latent factors 

(such as individual ability) that influence, jointly, individual earnings and education. 

 In this case, a more appropriate path diagram is the following: 

 

 

 

xij  yi 

 

ui 

 

xij  yi 

 

ui 
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where now there is an association between xijandui 

What are the consequences of this correlation between xijandui , using OLS estimator? 
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Using Ordinary Least Squares (OLS) estimator:  

 

What if  E(X’u)≠0  or cov(xijui)≠0 ?  

 

Consequences: 

A relevant consequence of E(X’u)≠0  orcov(xijui)≠0 on OLS estimates is the following: 

1) ( ) yX'XX'β 1−=OLS
ˆ  is biased: 

 

( ) uX'XX'ββ 1−=−OLS
ˆ ;        ( ) 0ββ −OLS

ˆE  

 

  2) OLSβ̂  is inconsistent: 
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As a result, we obtain that the inequality 0uX' 
n

p
1

lim  or ( 0
=

n

i
iijux

n
p

1

1
lim ) converges to a 

non-zero value. This is a direct consequence of the Weak Law of large Numbers (WLLN), 

observing that plim is the probability limit of the average of n vectors (k x 1), each of which has 

non-zero expected value, given cov(Xu)≠0  orcov(xijui)≠0. 

 

In general when 0uX' 
n

p
1

lim (or 0
=

n

i
iijux

n
p

1

1
lim ) at least one among the explanatory 

variables in X, (e.g. xj) is said to be endogenous. 
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Endogeneityof X[E(X’u) ≠0 or cov(xijui)≠0] usually occurs because of one of the 

following three causes: 

- Omitted explanatory variables: Additional variables that, because of data 

unavailability, cannot be included as regressors. An example is given by the omitted 

individual ability in a wage equation, where individual’s years of schooling (observed 

explanatory variable) is correlated with the unobserved ability. 

- Measurement error: When we can observe only an imperfect measure of an 

explanatory variable, xj. An example is given by the individual income in a 

consumption equation estimated using microdata. The “reported”individual income is 

often systematically understated by the interviewed. 

- Simultaneity: When an explanatory variable, xj,  is determined simultaneously along 

with the dependent variable yi. For example, if yi is the time that a subject devotes to 

domestic work and the explanatory variable xj is his/her market working time. Market 

working time of the subject is partly determined by the his/her commitment in 

housework  (reversed causality).      
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How to correct the influence of the endogenous explanatory variables on the estimation of  

y = X+u? 

Instrumental Variables  (IV) method 

Let Zbe a n x k  matrix of  the n column vectors, in which the second column  reports the variable 

zi2 in substitution of the endogenous variable xi2:  
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the variable zi2, assumed as observable, is defined as an instrumental variable (IV) if it satisfies the 

following two conditions:  

 

1) zi must be not correlated with the errors ui [cov(zi2ui)= 0];  

 

2)  zi2 must be correlated with the endogenous variable xi2 of the matrix X[cov(zi2xi2) ≠ 0]. 

 

In short, to conduct IV estimations, we need to have instrumental variables that are uncorrelated 

with the errors but partially and sufficiently correlated with the endogenous regressors. Then the 

matrix Z must include only independent variables xi, not correlated with the error term, and 

instrumental variables, zi. 
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IV estimator in the multivariate model 

 
 

The IV estimator is given by: ( ) yZ'XZ'β 1−=IV
ˆ  

 

The covariance matrix, ( )ˆ
IVVar β , is obtained by replacing the model specification, y = X+u ,into

( ) yZ'XZ'β 1−=IV
ˆ  and deriving the expected value ( )( )ˆ ˆ 'IV IVE B B− −β β . The result is given by: 

 

( ) ( )  12 −−= XZ'ZZ'ZX'β 1IV
ˆVar  with 

kn

uu

−
=

ˆ'ˆ
ˆ 2  

 

The Two-Stage Least Squares (2SLS) Method 

 

Again, let’s consider a population model: 

 

y = X+u  or  yi = 0 + 1xi1 + 2xi2 + …+jxij +…+k-1xi;k-1+ ui 

where xi1is  an endogenous regressor. 

Suppose that further m exogenous variables (instruments) zi = z1;z2; …; zmare correlated with  xi1but 

not with the error ui. 
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Then, let’s consider  mimiiikkii zzzxxx  +++++++= −− .....ˆ 2211112201  (or πz'γx' ii +=ix1̂ ) as a 

linear projection of xi1 with all exogenous variables xi and instruments zi .  

 

Thus, we can say that by estimating xi1(for example, by OLS) with all exogenous regressors and 

instruments (reduced-form estimation), we obtain: OLSOLSix πz'γx' ii +=1̂  and iii x̂x += 11 ,  

 

where ix̂1 , estimated by OLS, is notcorrelated with ui (while i is correlated with ui). 

 

Then ix̂1 , estimated by OLS, can be used as an instrumental variable of x1 to estimate yi 

 

 

SUMMARIZING THE TWO-STEP PROCEDURE: 

 

Step 1: Obtain 1x̂  estimating x1 by OLS against all exogenous variables, including all 

of instruments (the first-stage regression) 

 

Step 2: Use 1x̂ in the place of 1x  to estimate y(by OLS) against 1x̂ and all of exogenous 

independent variables, not instruments (the second stage regression) 
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SOCIAL EXPERIMENTS 

 

Suppose that an evaluation is proposed in which it is possible to run a social experiment that 

randomly chooses individuals from a group to be administered the treatment. 

 

By implementing randomization, one ensures that the treated and the nontreated groups are equal 

in all aspects apart from the treatment status.  

 

In terms of the treatment effects model we consider the following simple Two-Equation model: 

y1i = x’i+ + u1i 

y0i = x’i+ u0i 

 

or, alternatively: 

yi = di(x’i+)+(1-di)(x’i)+ diu1i + (1-di)u0i= di(x’i+)+(1-di)(x’i)+i 

with di = 0;1, dummy indicator variable of exposure to treatment; and  = treatment parameter 

recognized as ATE. 
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Random assignment implies the following two key assumptions: 

1) E(u1i |di =1) = E(u0i |di =0)= E(1i) 

2) E(|di =1) = E() 

 

One possible problem for randomization concerns dropout behaviour. For simplicity, suppose a 

proportion p of the eligible population used in the experiment prefer not to be treated and when 

drawn into the treatment group decide not to comply with treatment. Noncompliance influences 

the treatment parameter as follows: 

 = (−p)E() 

 

 

which is a fraction of the ATE.  

A relevant problem arises if compliance to the program is not observable.  In this case, the 

treatment parameter, , is not identifiable.  If, on the other hand, compliance is observable, the 

ATE parameter can be identified obtaining an estimate p*of p. 
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Another possible problem results from the complexity of contemporaneous policies in developed 

countries and the availability of similar alternative treatments accessible to experimental controls.  

The experiment itself may affect experimental controls as, for instance, excluded individuals may 

obtain other available treatments, which, in some cases, is the same treatment but accessed through 

different channels.  

This would amount to another form of noncompliance, whereby controls obtain the same treatment 

of treated administered through different channels. 
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NATURAL EXPERIMENTS 

 

The natural experiment method makes use of naturally occurring phenomena that may induce 

some form of randomization across individuals in the eligibility or the assignment to treatment. 

 

Typically, this method is implemented using a before and after comparison across groups. It is 

formally equivalent to a difference-in-differences (DID) approach which uses some naturally 

occurring event to create a "policy" shift for one group and not another. 

 

The policy shift may refer to a change of law in one jurisdiction but not another, to some natural 

disaster, which changes a policy of interest in one area but not another, or to a change in policy 

that makes a certain group eligible to some treatment but keeps a similar group ineligible. 

 

The difference between the two groups before and after the program change is compared, thereby 

creating a DID estimator of the program impact. 

 

 



37 
 

Difference-in-Differences (DID) approach to natural experiment 

 

DID approach explores a change in policy occurring at some time period t, which introduces the 

possibility of receiving treatment for some individuals belonging to population, and not to receive 

any treatment for the remaining subjects.  

 

It then uses longitudinal data, where the same individuals are followed over time, or repeated cross 

section data, where samples are drawn from the same population before and after the intervention, 

to identify some average impact of treatment. 

 

We start by considering the evaluation problem when longitudinal data is available: 

 

Each individual is observed before and after the policy change, at time t0, before the treatment, and 

at t1,  after the treatment, di.  

Let dit(0;1 for i-th subject at time t) denote the treatment status of i-th individual at time t and di 

(0;1 without the time subscript) be the treatment group to which i-th individual belongs to.  
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Difference-in-Differences (DID) Estimator 

[DID Method: Theory and Application pag. 72 “Handbook of Impact Evaluation] 

The DID estimator adopts the assumption of no selection due to the transitory change, di, so that 

we can rewrite the previous Outcome Equation  as follows: 

 

yit = x’it+dit +uit 

 

E[uit1 - uit0|di = 1] = E[uit1 - uit0|di = 0] = E[uit1 - uit0] = 0. 

 

Then, we can write: 

 
( ) ( )

( )
1' | 1 | 1 1

| ;
' | 0

i i it i i i i

it i

i it i

E d E u d if d and t t
E y d t

E u d otherwise

+ = + = = =
= 

+ =

x β

x β  
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If we can eliminate the error components, the ATT parameter is identified: 

 

( )          1 0 1 0| 1 | 1; | 1; | 0; | 0;ATT i it i it i it i it iE d E y d t t E y d t t E y d t t E y d t t = = = = = − = = − = = − = =

 

 

The corresponding sample estimator: 
1 1 0 0

1 0 1 0
ˆ ˆ

ATT DID t t t ty y y y     = = − − −     

is the DID estimator. 

 

An alternative approach to obtain the ATT parameter is to estimate 3̂  by running an OLS 

regression on the following DID model: 

yit = x’it+ti + di +(tidit)+uit 

 

where: ti = dummy  of the period (equal to 0, before the treatment; equal to 1 after the treatment) 



40 
 

di = dummy indicating the status, namely if the i-th subject has been treated (0 = untreated; 1 

treated)  

tidit = dummy indicating the status, namely if the i-th subject has been treated status 

We can interpret estimated parameters of DID model as follows: 

 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

1

2

3

ˆ ˆ | 0; 0

ˆ ˆˆ | 1; 0 | 0; 1

ˆ ˆˆ | 0; 1 | 0; 0

ˆ ˆˆ ˆ | 1; 1 | 0; 1

ˆ ˆ| 1; 0 | 0; 0

i i i

i i i i i i

i i i i i i

DID i i i i i i

i i i i i i

E y t d

E y t d E y t d

E y t d E y t d

E y t d E y t d

E y t d E y t d







 

= = =

= = = − = =

= = = − = =

 = = = = − = =
 

 − = = − = =
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Weaknesses of DID estimator 

 

i) Selection on idiosyncratic temporary shock 

The DID procedure does not control for unobserved temporary individual-specific shocks that 

influence the participation decision. 

 

To illustrate the conditions such inconsistency might arise, suppose a training program is being 

evaluated in which enrolment is more likely if a temporary dip in earnings occurs just before the 

program takes place (see Ashenfelter l978; Heckman and Smith 1999). 

 

 

As a reaction to the temporary decline, a faster earnings growth is expected among the treated, 

even without program participation. Thus, the DID estimator is likely to overestimate the impact 

of treatment 
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ii) Differential in macro-trends 

Identification of ATT using DID relies on the assumption that both treated and untreated 

experience common trends or, in other words, the same macro shocks. If this is not the case, 

DID will not consistently estimate the ATT. Differential trends might arise in the evaluation of 

training programs if treated and untreated operate in different groups (For example, 

unemployment in different age groups is often found to respond differently to cyclical 

fluctuations). 
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Non-linear DID models 

 

A restrictive feature of the DID method is the imposition of additive separability of the error term 

conditional on the status, di, and the observable covariates, xi: 

E[uit1 - uit0|di = 1; xi] = E[uit1 - uit0|di = 0; xi] = E[uit1 - uit0| xi] = 0 

 

Blundell et al. (2004) noted that linearity in the error term can be particularly unrealistic when, for 

example, the outcome is given by a dummy variable yi(0;1).  

 

Recently, Athey and Imbens (2006) developed a general nonlinear DID methodespecially suited 

for continuous outcomes: the "changes-in-changes" (CIC) estimator. An extension to the discrete 

case in which the outcome variable is observed as binary (0;1) and the estimated outcome is a 

probability  is also considered by the authors. 
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DID estimation of a logarithmic function 

Since the dependent variable is expressed as a logarithm, the impact in percentageterms of a 

dummy variable, such as the DID coefficient (3), on the logarithm of outcome is the exponential 

term [exp(3)−1]. Thus, we can compare those who underwent the treatment between the two 

waves and those who did not, obtaining the difference of changes in percentage terms (population 

average effect). In addition, we can evaluate as a percentage the impact of treatment only for those 

subjects who underwent to treatment (subject-specific effect) as [exp (1+3)−1]. 
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DID estimation of a simultaneous-equation system 

 

To estimate the effect of a treatment on a simultaneous variation of different  outcomes, a 

longitudinal model using a Difference-in-Difference (DID) parametric structure may be 

implemented in a simultaneous-equation system specifying the error terms as in a Seemingly 

Unrelated Regressions (SUR) model. 

An example of specification of SUR-DID model is the following: 

 

1
1

1 1 11 12 13 1

2
2 2 21 22 23 2

1

1 2 3

'

'

................................................................

'

n
ti ti i i i i ti
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y t d d t u
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      = + =
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X β

uX β

X βy u

y X β u

 

 

Where X1, X2….Xm  are n x k block matrices of regressors, DID dummies included. 
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Let us assume that latent variables common to the m equations influences the outcomes, we 

specify the stochastic component of the model as follows (for the sake of simplification we 

consider here a model with m = 2 simultaneous equations): 

 
2

1 12

2

1 12

2 2

1 12 1 12

2 22 2 2 2
12 2 12 1

2

12 2

2

12 2

0 ... 0 ... 0 0

0 ... 0 0 ... 0

... 0 ... ... 0 0 ... 0

0 0 ... 0 0 ...

0 0 0 0 0 0

0 0 0 0 0 0

... 0 ... 0 0 0 ... 0

0 0 ... 0 0 ...

n n n n n n

 

 

   

   

 

 

   

 
 
 
 
 

  = =  =   
  

 
 
 
  

Ω I Σ I  

 

The covariance matrix of the error terms of a Two-Equation model reports the two variances of the 

errors, 2
1  and2

2 in the diagonal, while the covariance 12 = 21 between the error terms is 

introduced to specify the influence of latent common factors on both equations. 

Adopting a Feasible Generalized Least Square (FGLS) estimator, we obtain the following 

estimation result: 

( ) ( ) ( )
11 1 11 1

* * * * * * * *' ' ' 'SUR
−− − −− −  = =  

 
X Ω X X Ω y X Σ I X X Σ I y  
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The covariance matrix ( )ˆ ˆ= Ω Σ I can be preliminarily estimated computing variances and 

covariances of the residuals obtained by a first-stage OLS estimate of each equation. This 

procedurecan be iteratively replicated to improve efficiency in estimation results. 

 

 

The SUR estimator, performing a FGLS procedure, is generally considered consistent and more 

efficient than the corresponding OLS estimator applied to each equation separately, if the 

correlation between the disturbances across the equations is high or, at least, moderate (see, among 

others, Srivastava and Giles 1987, pp. 70–71). The gain in efficiency using SUR, however, could 

be nullified if conditions for inconsistent estimates occur.  

 
 

One thing to remember, in this regard, is that the FGLS–SUR estimator is consistent only if the 

explanatory variables in each equation are not correlated with the errors in each equation.  

This means that if the specification of, say, the first equation suffers for omitted explanatory 

variables or for measurement errors, this also affects inconsistency in the estimates of the other 

equations. This implies that the problems due to misspecification may be amplified performing 

FGLS-SUR. 

 

In practice, the SUR approach may perform better than other estimators only if the surveyed data 

used for the analysis allow a correct specification of the model. 
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INSTRUMENTAL VARIABLES (IV) METHOD 

[SEE, ALSO HANDBOOK OF IMPACT EVALUATION: PAG 87 AND SUBSEQUENT] 

 

Let’s start by considering the following two-regime simultaneous equation model: 

 

Eq. 1 (outcome of treated subjects) 

𝑦1𝑖 = 𝐱𝑖
′𝛽1 + α + 𝑢1𝑖𝑢1~𝑁(0, 1

2)         (1)                                      

Eq. 2 (outcome of untreated subjects) 

𝑦0𝑖 = 𝐱𝑖
′𝛽0 + 𝑢0𝑖  𝑢0~𝑁(0, 0

2)         (2) 

Selection Equation: 

𝑑𝑖
∗ = 𝐳𝑖

′𝛾 + 𝑣𝑖                                                                                                        (3) 

with di= 1 if  𝑑𝑖
∗ = 𝐳𝑖

′𝛾 + 𝑣𝑖 > 0,  and  di= 0 otherwise. 

The error term, vi, is distributed as a normal standard, 𝑣𝑖~𝑁(0,1). 

Endogeneity of the choice of the regime is specified by introducing proper assumptions on the relations 

between the error terms of the outcome equations, u1 e u0, and the error term of the selection equation, 𝑣𝑖 : 
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𝑢1𝑖 = 𝜎1𝑣𝑣𝑖 + 𝜀1𝑖 error specification in eq. 1 

𝑢0𝑖 = 𝜎0𝑣𝑣𝑖 + 𝜀0𝑖error specification in eq.2  

where𝜀1𝑖and  𝜀0𝑖 are independent and identically distributed (IID) distrbances.𝜎1𝑣 e  𝜎0𝑣 are the 

covariances between the error terms of each outcome equation and the error term of the selection 

equation. 

 

The IV approach requires the existence of at least one regressor exclusive to the decision rule, say 

zj. In our notation, this is included in the regressors set z. zj  is known as the instrument.  

 

The instrument zj affects participation only, and so it is not included in x. This is known as the 

“exclusion restriction” rule. It implies that the potential outcomes do not vary with zj and any 

difference in the mean observed outcomes of two groups, differing only with respect to zj, can only 

be due to consequent differences in the participation rates and composition of the treatment group.  
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When the treatment effect is homogeneous, so that  = ATE = ATT, only differences in 

participation rates subsist and these can be used together with resulting differences in mean 

outcomes to identify the impact of treatment. 

 

We formalize the following three assumptions below. 

 

The first assumption states that the treatment effect is homogeneous across individuals, namely:  

 = i       (IV1) 

 

 The second and the third assumption define the dependence of the outcome yi on the participation 

status di and on the instrument zj: 

P(di=1|zj) ≠ P(di=1)     (IV2) 

and 

E(ui|zj) = E(ui)      (IV3) 
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Under Conditions IV1 to IV3 the instrument zj is the source of exogenous variation used to 

approximate randomization. It provides variation correlated with the participation decision only. 

As a consequence of conditions IV1 and IV3, we have: 

E(yi|zj) = E[yi|P(di=1|zj)] 

 

IV estimation of an endogenous treatment effect 

 

Following, for example, Heckman and Robb (1985) and Verbeek (2006), the IV estimator of a 

two-regime model can be given by: 

( ) ( )( )1 0
ˆˆ ˆ ˆˆ ' 1 'i i i i i i iy d x d x d= + − +β β  

Or, in the (ideal) case in which no significant differences occur between the coefficients sets 1 

and 0: 

ˆˆ ˆˆ 'i i iy x d= +β . 

The variable  
ˆ

id  is the prediction of the Probit estimation of the selection equation, 
ˆ ˆ'i id = z γ , and 

identifies the probability of a subject to undergo the treatment, given the instruments zj included in  

iz .  
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An alternative estimator (Hausman,1978) suggests to replace 
ˆ

id  with 
ˆˆ ˆ

i id v + in the previous 

regression. îv  are the residuals of the Probit estimation of the selection equation 

ˆ ˆˆˆ ˆ'i i i iy x d v = + +β  

 

The residuals, îv ,  reflect the unobserved heterogeneity affecting treatment not captured by the 

instruments and exogenous variables in the model. If the coefficient ̂  of îv  is statistically 

different from zero, the impact of unobserved characteristics jointly affecting the treatment di and 

outcomes yi is significant, as a consequnce the null that di is exogenous is rejected. 
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The Control Function Method 

[see, also, Vella and Verbeek (1999)] 

Consider a more general Two-Regime model as specified in Eqs. (1), (2) and (3): 

Eq. 1 (outcome of treated subjects) 

𝑦1𝑖 = 𝐱𝑖
′𝛃1 + 𝑢1𝑖  𝑢1~𝑁(0, 1

2)         (1)                                      

Eq. 2 (outcome of untreated subjects) 

𝑦0𝑖 = 𝐱𝑖
′𝛃0 + 𝑢0𝑖  𝑢0~𝑁(0, 0

2)        (2) 

Selection Equation: 

𝑑𝑖
∗ = 𝐳𝑖

′𝛄 + 𝑣𝑖                                                                                                                            (3) 

with di= 1 if  𝑑𝑖
∗ = 𝐳𝑖

′𝛄 + 𝑣𝑖 > 0,  and  Ii= 0 otherwise. 

The control function estimator (CF) considers the endogeneity of the treatment indicator, di, as a 

censored variable (or selectivity)problem.In particular, CF approach takes simultaneously into 

account the potential endogenous selectivity of treatment in both treatment and control equations, 

given by the following expected outcomes: 
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( ) ( )
( )

( )

( )

( )
*

1 1 1 1 1 1

' '
1 ' ' ' '

1 ' '
i i v i i v vE y d E v v

 
  

−
= = +  − = + = +

−  − 

i i

i i i i

i i

z γ z γ
x β z γ x β x β

z γ z γ    

for treated group, and: 

 

( ) ( )
( )

( )

( )

( )
*

0 0 0 0 0 0

' '
0 ' ' ' '

' 1 '
i i v i i v vE y d E v v

 
  

− − −
= = +  − = + = +

 − − 

i i

i i i i

i i

z γ z γ
x β z γ x β x β

z γ z γ   

For untreated group. 

The effect of treatment can be estimated by the difference of the intercept coefficients included, 

respectively, in   and in . 

Analogously, the treatment effect can be obtained estimating the parameter 𝛼  in the following 

model specified on the full sample: 

( )
( )

( )
( )

( )

( )
*

1 0

' '
; ' 1

' 1 '
i i i i v i vE y d d d d

 
  

−
= + + + −

 − 

i i

i i

i i

z γ z γ
x x β

z γ z γ  

di=1 indicates that the subject is undergone to treatment; di = 0 indicates, at the opposite, that the 

subject is not undergone to treatment. 
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The parameter 1v e 0v are the covariances of the error of the selection equation and the error 

terms of the outcome equations of, respectively, treated and untreated. If the condition 1v = 0v 

occurs, this implies a “perfect randomization” condition, then the estimated coefficient  ̂  

corresponds to the average treatment effect (ATE). Estimating the control-function model, 

endogeneity of treatment can be verified if 1
ˆ

v and 0
ˆ

v significantly differ from zero. 
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Weaknesses of IV and CF estimators 

 

A key issue in the implementation of IV is the choice of the instrument. It is frequently very 

difficult to find an observable instrumental variable, zj, that satisfies the above reported 

Assumption IV3: E(ui|zj) =  E(ui). 

 

This will happen when the observables that determine participation are also the determinants of 

potential outcomes. In other cases, the instrument may have insufficient variation or may cause 

insufficient variation in the probability to undergo the treatment (Propensity Score).  

Identification using classical IV still relies on the additional homogeneity assumption IV1 ( = i). 

If IV1 does not hold, the exclusion restriction is also unlikely to hold. To see why, notice that the 

unobservable in the outcome equation is now: 

( )*

i i i iu u d  = + −  
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 and the new exclusion restriction needs to be expressed in terms of u*
i: 

 

( ) ( ) ( ) ( ) ( )* | | | 1;i j i j j i i j iE u z E u z P z E d z E u  = + − =    

Only if no selection on the idiosyncratic gains occurs, it implies that the idiosyncratic gain, (-i), 

and the unobservable in the selection equation, vi, are not related. In such case, we have: 

( ) | 1; 0i i jE d z  − = =   

and  

( ) ( )* | 0i j iE u z E u= =  

such as in assumption IV3. 
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An example 

 

To illustrate the problem, consider the case on return to education.  

Assume that the returns to education are partly determined by the student's unobservable ability. 

Suppose the instrument is some measure of the cost of education (say, distance to college and 

taxes) under the assumption that it is uncorrelated with the student's potential earnings and ability.  

 

However, the selection process will create a relationship between distance to college and returns to 

college education in the data. This is because individuals facing a relatively low cost of education 

(live closer to college) may be more likely to invest in college education, even if expecting 

comparatively small returns.  

 

Under our simplistic setup, this means that the distribution of ability among college graduates who 

live far from college is more concentrated on high ability levels than that for college graduates 

who live close to college. Such compositional differences will then affect the distribution of 

returns to college in the data for the two groups. 
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As a consequence the Homogeneity Assumption IV1 ( = i) fails to hold, and IV and CF will not 

generally identify ATE or ATT. 

 

This happens because the average outcomes of any two groups, differing only on the particular z-

realizations, are different for two reasons:  

(i) different participation rates  

(ii) compositional differences in the treated/nontreated groups with respect to the unobservables.  

 

The later precludes identification of ATE or ATT.  

 

However, can a different "local" average parameter be identified under slightly modified 

hypothesis? The “Local Average Treatment Effect (LATE)” parameter, to which we now turn 
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The Local Average Treatment Effect (LATE) 

 

The solution advanced by Imbens and Angrist (1994) is to identify the impact of treatment from 

local changes in the instrument zj when the treatment effect is heterogeneous.  

 

The rationale is that, under certain conditions, a change in zj reproduces random assignment locally 

by inducing individuals to alter their participation status without affecting the potential outcomes, 

(y0 and y1).  

 

As with standard IV, the difference in average outcomes between two groups, differing only in the 

realization of zj, results exclusively from the consequent difference in participation rates.  

 

Unlike standard IV, the identifiable effect will not correspond to the ATE or the ATT. Instead, it 

will depend on the particular values of zj used to make the comparison. 

 

The identifiable effect is the average impact on individuals that change their participation status 

when faced with the change in zj used to estimate the effect of treatment. 
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As with classical IV, the validity of an instrument zj depends on whether it determines 

participation and can be excluded from the outcome equation conditional on participation.  

 

In a heterogeneous effect framework, the exclusion condition requires that: (i) zj has no joint 

variation with vi and (ii) zj is unrelated to the unobserved determinants of potential outcomes 

 

The former condition is required or otherwisechanges in zj would not separate changes in 

participation rates unrelated to outcomes as simultaneous changes in vi could be related with 

changes in the unobservable components of the potential outcomes, particularly gains from 

treatment. 

 

The LATE assumptions can now be formally established. The first two assumptions are identical 

to the classical IV Assumptions IV2 and IV3:  

 

P(di=1|zj) ≠ P(di=1)    (LATE1 or IV2) 

and 

E(ui|zj) =  E(ui)     (LATE2 or IV3) 
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However LATE requires stronger identification assumptions than standard IV to allow for the 

relaxation of the homogeneity hypothesis.  

The additional assumption pertains to the relationship between instrumentszj and the remaining 

unobservables included in vi: 

( );i i jz  ⊥       (LATE3) 

 

The last of the LATE assumptions is  

di(zj) is a monotonic function of zj. (LATE4) 

 

The first assumption (LATE1) clarifies the meaning of the LATE parameter: it measures the 

impact of treatment on individuals that move from nontreated to treated when zj changes. 
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The LATE approach can also be illustrated by the example on education return.  

As before, suppose zj is a measure of cost, say distance to college, with participation assumed to 

become less likely as zj increases.  

 

To estimate the effect of college education, consider a group of individuals that differ only in zj. 

Among those that invest in further education when distance zj equals zj
* some would not do so if zj 

= zj
** where zj

*<zj
**.  

In this case, LATE measures the impact of college education on the "movers" by assigning any 

difference on the average outcomes of the two groups to the different enrollment rates caused by 

the difference in the cost of investing. 

 

The monotonicity assumption is required for interpretation purposes.  

 Under monotonicity of di with respect to zj, the LATE parameter measures the impact of treatment 

on individuals that move from nontreated to treated as zj changes.  
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If monotonicity does not hold, LATE measures the change in average outcome caused by a change 

in the instrument, which is due to individuals moving in and out of participation, but cannot 

separate the effect of treatment on individuals that move in from that on individuals that move out 

as a consequence of a change in zj (see Heckman, 1997). 
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Weaknesses of CF 

 

The relative robustness of the classical parametric CF method comes from the structure it imposes 

on the selection process. However, this same feature has been strongly criticized for being overly 

restrictive. 

 

There are two key assumptions underlying the selection model in CF approach:  

(i) the parametric assumption on the joint distribution of unobservables; 

 

(ii)  the linear index assumption on the selection rule.  

 

With regard to the point (i), important recent developments have proposed new semiparametric 

estimators that relax the assumptions of Normality of the errors distributions (see, for example, 

Powell, 1994).  
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More recently, Vytlacil (2002) has shown that the LATE approach can be seen as an application of 

a selection model. To see this, we first compare the two methods and then briefly discuss the 

equivalence result of Vytlacil. 

 

The three CF assumptions can be equivalently written as: 

-di is a nontrivial function of zj; 

-zi is independent of (ui, , vi)  

-Index restriction: 𝑑𝑖 = 1[(𝐳𝑖
′𝛄 + 𝑣𝑖) > 0] 

 

In turn, the LATE approach is based on the following regression model: 

 

( ) ( ) ( )'| 1| | 1|i j i i j i i jE y z P d z E d z= + = =x β  

The restricted CF estimator is based on an OLS regression, such as: 

( ) ( ) ( )
( )

( )
( )

( )

( )
*

1 0

' '
; ' | | 1 |

' 1 '
i i i j v i j v i jE y d d z d z d z

 
  

−
= + + + −

 − 

i i

i i

i i

z γ z γ
x x β

z γ z γ  
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based on the LATE assumptions discussed above. 

 

We repeat them here:  

di is a nontrivial function of zj;           (LATE1) 

zj is independent of (ui, i, vi) and           (LATE2) 

Monotonicity assumption: d(zj
*)>d(zj

**) or d(zj
*) < d(zj

**) for all individuals.    (LATE3) 
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MATCHING METHODS 

[SEE THE TEXTBOOK “How Do We Know If a Program Made a Difference?”, PAG. 125] 

 

The underlying motivation for the matching method is to reproduce the comparison group among 

the nontreated, this way re-establishing the experimental conditions in a nonexperimental setting.  

 

The matching method constructs the correct sample counterpart of each treated subject  by pairing 

each participant with members of the nontreated group.  

 

The matching assumptions ensure that the only remaining relevant difference between the pairs of 

linked individuals is due to program participation. 

 

Matching can be used with cross-sectional or longitudinal data. In its standard formulation, 

however, the longitudinal dimension is not considered.  

We therefore abstract from time effect in this discussion. 
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We start by considering the potential outcome equations specified as follows: 

Eq. 1 (outcome of treated subjects) 

𝑦1𝑖 = 𝐱𝑖
′𝛃 + α0 + 𝐱𝑖

′𝜶1 + 𝑢1𝑖 + 𝑢0𝑖      (1)                                      

Eq. 2 (outcome of untreated subjects) 

𝑦0𝑖 = 𝐱𝑖
′𝛃 + 𝑢0𝑖         (2) 

Where the vector x includes the observed characteristics of the individual and 𝑢1𝑖 + 𝑢0𝑖 are unobserved 

characteristics of the individual (in other words, 𝑢1𝑖 + 𝑢0𝑖 take on different values for different individuals but 

only the variation in x is actually observed across individuals).  

Program impact is then: 

1 0 0 1 1'i i i iy y u− = + +x α  

This is thus a framework where program impact varies across individuals. It does so because individuals have 

different observed (captured by the term 𝐱𝑖
′𝜶1) and unobserved (captured by 𝑢1𝑖) determinants of program 

impact. 
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Variation in 𝐱𝑖
′ can be controlled adopting proper randomization techniques to homogenize   

sample composition for both treated and untreated groups and to identify the choice of be treated 

or untreated.  

 

The consequent identifying assumption is known as “unconfoundedness” or conditional 

independence. 

 

Variation in unobservable characteristics 𝑢1𝑖should be conformed to the following assumption: 

-  That 𝑢1𝑖 plays no role in the participation decision (which in this context implies 

toassume that 𝑢1𝑖= 0); 

 

This assumption implies the absence of selection of unobservables in the comparison between 

treated and untreated. 

 

Matching estimates program impact for each individual by finding a similar individual who 

experienced the counterfactual outcome. For a participant the counterfactual outcome is 𝑦0𝑖, while 

for a non-participant it is 𝑦1𝑖.  
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For each individual, his/her counterfactual outcome is estimated by the outcome experienced by a 

similar person for whom that counterfactual is observed.  

 

In this manner, an estimate of 𝑦1𝑖 - 𝑦0𝑖 can be formed for each observed individual. It is an estimate 

because the value of either 𝑦1𝑖 or 𝑦0𝑖 will have been estimated for each individual according to 

their participation status.  

 

With the estimates of program impact 𝑦1𝑖 - 𝑦0𝑖 so obtained for each observed individual, estimating 

of average impact for whatever population the observed individuals simply involve suitably the 

computation of average across them. 
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Selection on observables (remedies) 

 

In order to correct estimates for the term 𝐱𝑖
′𝜶1, we consider different possible values of xi have 

associated probabilities of occurring in the population depending on 𝜶1, Pr(xi = 𝐱𝑖
′𝜶1). 

 

This probability can be easily estimated computing the ratio between the individuals included in 

the sample for whom xi = 𝐱𝑖
′𝜶1 and total of individuals included in the sample: 

( ) 1'

1Pr ' i

i i

N

N
= =

x α
x x α  

 

The average treatment effect for the population is given by: 

( ) ( )1 0 1 1| ' Pr 'i i i i i iATE E y y= − = =x x α x x α  

 

 

In other words, the average treatment effect is the sum of the expectations of the treatment 

effectforthe various types (as captured by xi) of individuals in the population, with each of 
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thoseexpectationsweighted by the frequency with which the individual with the type ( xi = 𝐱𝑖
′𝜶1) 

occurs in thepopulation. 

 

 

Parameters of Interest 

The parameter that received the most attention in evaluation literature is the ‘average treatment 

effect on the treated’ (ATT), which isdefined as: 

ATT =  E[y1i|di = 1] − E[y0i|di = 1] 

 

As the counterfactual mean for those being treated - E[y0i|d = 1]- is not observed,one has to choose 

a proper substitute for it in order to estimate ATT.  

 

Using themean outcome of untreated individuals E[y0i|d = 1] is in non-experimental studiesusually 

not a good idea, because it is most likely that components which determinethe treatment decision 

also determine the outcome variable of interest. Thus, theoutcomes of individuals from treatment 

and comparison group would differ even inthe absence of treatment leading, in this context, to a 

‘self-selection bias’.  
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This concept can be formalized as follows.  

 

For ATT it can be notedas: 

E[y1i|d = 1] − E[y0i|d = 0] = E[y1i|di = 1] − E[y0i|di = 1] + E[y0i|d = 1] − E[y0i|d = 0]  

 

E[y1i|d = 1] − E[y0i|d = 0] = ATT + E[y0i|d = 1]− E[y0i|d = 0]  

 

The difference between the left hand side of previous equation and ATT is the so-called‘self-

selection bias’. The true parameter ATT is only identified, if: 

E[y0i|d = 1] − E[y0i|d = 0]= 0.  

 

In social experiments where assignment to treatment is random this condition is ensured and the 

treatment effect, ATT, is identified. 

 

In non-experimental studies one has to invoke some identifying assumptions to solve the selection 

problem stated above. 
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Another parameter of interest is the ‘average treatment effect’ (ATE), which is defined as: 

 

ATE=  E[y1i] − E[y0i] 

 

The additional challenge when estimating ATE is that both counterfactual outcomes: 

 

E[y1i|d = 0]  and E[y0i|d = 1] 

 

have to be constructed. 

 

How to remedies to bias occurring for self-selection?  

 

Analysts suggest using these resources: 

 

i) Conditional Independence Assumption; 

ii) Common Support 

iii) Data Balancing 

iv) Estimation Strategy  
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Conditional Independence Assumption (CIA):  

One possible identification strategyis to assume, that given a set of observable covariates xi which 

are not affected bytreatment, potential outcomes are independent of treatment assignment. 

This implies, that selection is solely based on observable characteristics and thatall variables that 

influence treatment assignment and potential outcomes simultaneously are observed by the 

researcher. Clearly, this is a strong assumption and has tobe justified by the data quality at hand. 

 

 

Common Support:  

A further requirement besides independence is the common support or overlap condition.  

It rules out the phenomenon of perfect predictabilityof di given xi: 

 

(Overlap) 0 <P(di = 1|X) < 1  

 

It ensures that persons with the same xi values have a positive probability of being both 

participants and non-participants (Heckman, LaLonde, and Smith, 1999) 
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Data Balancing 

Since conditioning on all relevant covariates is limited in the case of a highdimensional vector xi 

(‘curse of dimensionality’), Rosenbaum and Rubin (1983)suggest the use of so-called balancing 

scores b(xi), i.e. functions of the relevantobserved covariates xi such that the 

conditionaldistribution of xi given b(xi) isindependent of assignment into treatment.  

 

Estimation Strategy 

Two approaches are currently adopted to manage the problem of multidimensionality of data in 

balancing: i) Covariate Matching and ii) Propensity  Score Matching. 

 

Covariate Matching (CVM) 

CVM distance measures like the Mahalanobis distance are used to calculate similarityof two 

individuals in terms of covariate values and the matching is done on these distances. Theinterested 

reader is referred to Abadie and Imbens (2004a and 2004b) who develop covariateand bias-

adjusted matching estimators. 
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Propensity Score Matching (PSM) 

One possible balancing score is thepropensity score, i.e. the probability of participating in a 

programme given the observedcharacteristics of the subjects reported by the covariates xi. 

Matching procedures based on this balancing score are knownas propensity score matching (PSM). 

 

Given that CIA holds and assuming additional that thereis overlap between both groups (called 

‘strong ignorability’ by Rosenbaum and Rubin(1983)), the PSM estimator for ATT can be written 

in general as: 

ATT = E{[y1i|di = 1;P(xi)] − [y0i|di = 0;P(xi)]}=E[y1i|di = 1;P(xi)] − E[y0i|di = 0;P(xi)] 

 

To put it in words, the PSM estimator is simply the mean difference in outcomesover the common 

support, appropriately weighted by the propensity score distribution of participants.  
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Based on this brief outline of the matching estimator in thegeneral evaluation framework, we are 

now going to discuss the implementation of PSM in detail. 

Once the researcher has decided to use PSM, he is confronted with a lot of questions regarding its 

implementation. summarises the necessary steps when implementing PSM: 

 

Step 1: Propensity Score Estimation (Variable choice) 

 

Step 2: Choose Matching Algorithm  

 

Step 3: Check Overlap/Common Support  

 

Step 4: Matching Quality/Effect Estimation 

 

Step 5: Sensitivity Analysis  
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Variable Choice 

More advice is available regarding the inclusion (or exclusion)of covariates in the propensity score 

model. The matching strategy builds on theCIA assumption, requiring that the outcome variable(s) 

must be independent of treatment conditional on the propensity score. Hence, implementing 

matching requires choosinga set of variables xi that credibly satisfy this condition. 

In particular, the omission of important variables can seriously increase bias inresulting estimates. 

The better andmore informative the data are, the easier it is to credibly justify the CIA and 

thematching procedure.  

 

However, it should also be clear that ‘too good’ data is nothelpful either. If P(xi) = 0 or P(xi)= 1 for 

some values of xi, then we cannot use matching conditional on those xi values to estimate a 

treatment effect, becausepersons with such characteristics either always or never receive treatment. 

Hence,the common support condition fails and matches cannot beperformed. 

 

 

A commonly adopted approach in variables selection relies on statistical significanceand is very 

common in textbook econometrics. To do so, one starts with a parsimonious specification of the 

model, e.g. a constant, the age and some regionalinformation, and then ‘tests up’ by iteratively 

adding variables to the specification. A new variable is kept if it is statistically significant at 

conventional levels. 
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Choosing a Matching Algorithm 

 

All matchingestimators contrast the outcome of a treated individual with outcomes of comparison 

group members. PSM estimators differ not only in the way the neighbourhood foreach treated 

individual is defined and the common support problem is handled, butalso with respect to the 

weights assigned to these neighbours. 

 

We present the general ideas and the involved trade-offs between some different algorithms: 

 

Nearest Neighbour Matching: The most straightforward matching estimatoris nearest neighbor 

(NN) matching. The individual from the comparison group ischosen as a matching partner for a 

treated individual that is closest in terms ofpropensity score. Several variants of NN matching are 

proposed, e.g. NN matching‘with replacement’ and ‘without replacement’. In the former case, an 

untreatedindividual can be used more than once as a match, whereas in the latter case 

itisconsidered only once. Matching with replacement involves a trade-off betweenbias and 

variance. If we allow replacement, the average quality of matching willincrease and the bias will 

decrease. This is of particular interest with data where thepropensity score distribution is very 

different in the treatment and the control group. 
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Caliper and Radius Matching: NN matching faces the risk of bad matches,if the closest neighbour 

is far away. This can be avoided by imposing a tolerancelevel on the maximum propensity score 

distance (caliper). Imposing a caliper worksin the same direction as allowing for replacement. Bad 

matches are avoided andhence the matching quality rises.  

Applying caliper matching means that thoseindividual from the comparison group is chosen as a 

matching partner for a treatedindividual that lies within the caliper (‘propensity range’) and is 

closest in terms ofpropensity score. 

 

Kernel and Local Linear Matching: The matching algorithms discussed so far have in common 

that only a few observations from the comparison group are used to construct the counterfactual 

outcome of a treated individual.  

Kernel matching (KM) and local linear matching (LLM) are non-parametric matching estimators 

that use weighted averages of all individuals in the control group to construct the counterfactual 

outcome.  

Thus, one major advantage of these approaches is the lower variance which is achieved because 

more information is used. A drawback of these methods is that possibly observations are used that 

are bad matches. 
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Overlap and Common Support 

 

An important step is to check the overlap and the region of common support between treatment 

and comparison group.  

 

Implementing the common support conditionensures that any combination of characteristics 

observed in the treatment group canalso be observed among the control group.  

 

ForATT it is sufficient to ensure the existence of potential matches in the control group,whereas 

for ATE it is additionally required that the combinations of characteristicsin the comparison group 

may also be observed in the treatment group. 

 

Several ways are suggested in the literature, where the most straightforward one is a visual 

analysis of the density distribution of the propensity score in both groups. 

 

We will present two methods,where the first one is essentially based on comparing the minima and 

maxima ofthe propensity score in both groups and the second one is based on estimating the 

density distribution in both groups. 
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Minima and Maxima comparison: The basic criterion of this approach is to delete all observations 

whose propensity score is smaller than the minimum and larger than the maximum in the opposite 

group.  

 

To give an example let us assume for a moment that the propensity score lies within the interval 

[0.07, 0.94] in the treatment group and within [0.04, 0.89] in the control group. Hence, with the 

‘minima and maxima criterion’, the common support is given by [0.07, 0.89]. 

 

 

Trimming to Determine the Common Support: A different way to overcome these possible 

problems is suggested by Smith and Todd (2005). They use a trimming procedure to determine the 

common support region and define the region of common support as those values of the  estimated 

propensity whose density falls in the positive side of the density distribution, within both the D = 1 

and D = 0 distributions. 
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Assessing the Matching Quality 

 

Since we do not condition on all covariates but on the propensity score, it has to bechecked if the 

matching procedure is able to balance the distribution of the relevantvariables in both the control 

and treatment group. 

 

The basic idea is to compare the situation beforeand after matching and check if there remain any 

differences after conditioning on the propensity score. If there are differences, matching on the 

score was not (completely) successful and remedial measures have to be done, e.g. by including 

interaction-terms in the estimation of the propensity score. 

 

One suitable indicator to assess the distance in marginal distributions of the xi-variables is the 

standardised bias (SB) suggested by Rosenbaum and Rubin (1985). For each covariate xi it is 

defined as the difference of sample means in the treated and matched control subsamples as a 

percentage of the square root of the average of sample variances in both groups.  

 

The standardised bias (for each covariate xi included inxi )before matching is given by: 

 

( )

( )
1 0

2 2

1 0
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The standardised bias after matching is given by: 

 

( )

( )
1 0

2 2

1 0

100
0.5

M M

after

x M x M

x x
SB

 

−
= 

 +  

 

Where dx  and 
2

xd are mean and variance in the treatment and control groups before matching; while  

dMx  and 
2

xdM are mean and variance in treatment and control groups in the matched sample. 

 

One possible problem with the standardised bias approach isthat we do not have a clear indication for the 

success of the matching procedure, even though in most empirical studies a bias reduction below 3% or 5% is 

seen as sufficient. 
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t-Test: A similar approach uses a two-sample t-test to check if there are significant differences in covariate 

means for both groups (Rosenbaum and Rubin, 1985). Before matching differences are expected, but after 

matching the covariates should be balanced in both groups and hence no significant differences should be 

found. 

The t-test might be preferred if the evaluator is concerned with the statistical significance of the results. The 

shortcoming here is that the bias reduction before and after matching is not clearly visible. 

 

Joint significance and Pseudo-R2 : Additionally, Sianesi (2004) suggests to re-estimate the propensity score 

on the matched sample, that is only on participants and matched non-participants and compare the pseudo-R2’s 

before and after matching. The pseudo-R2 indicates how well the regressors xi explain the participation 

probability. After matching there should be no systematic differences in the distribution of covariates between 

both groups and therefore, the pseudo-R2 should be fairly low. Furthermore, one can also perform an F-test on 

the joint significance of all regressors. The test should not be rejected before, and should be rejected after 

matching. 

 

Stratification Test: Finally, Dehejia and Wahba (1999, 2002) divide observations into strata based on the 

estimated propensity score, such that no statistically significant difference between the mean of the estimated 

propensity score in both treatment and control group remain. Then they use t-tests and F-test within each 

stratus to test if the distribution of xi-variables is the same between both groups (for the first and second 

moments). If there are remaining differences, they add higher-order and interaction terms in the propensity 

score specification, until such differences no longer emerge. 
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Sensitivity Analysis 

Unobserved Heterogeneity - Rosenbaum Bounds. 

The estimation of treatment effects with matching estimators is based on the CIA, that is selection on 

observable characteristics. However, if there are unobserved variables which affect assignment into treatment 

and the outcome variable simultaneously, a ‘hidden bias’ might arise.  

 

It should be clearthat matching estimators are not robust against this ‘hidden bias’. Since it is not possible to 

estimate the magnitude of selection bias with non-experimental data, we address this problem with the 

bounding approach proposed by Rosenbaum (2002).  

 

The basic question to be answered is, if inference about treatment effects may be altered by unobserved factors. 

In other words, we want to determine how strongly an unmeasured variable must influence the selection 

process in order to undermine the implications of matching analysis. 

 

 

 

Let us assume that the participation probability is given by P(xi) = P(di =1; xi) = F(xiβ+γui),  
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where xi are the observed characteristics for i-th individual, ui is the unobserved variable and γ is the effect of 

ui on the participation decision. 

 

Clearly, if the matching is free of hidden bias, γ will be zero and the participation probability will solely be 

determined by xi . However, if there is hidden bias, two individuals with the same observed covariates xi have 

differing chances of receiving treatment. 

Let us assume we have a matched pair of individuals i and j and further assume that F(.) is thecdf of the 

logistics distribution. The odds that individuals receive treatment are then given by P(xi)/(1− P(xi)) and P(xj)/ 

(1− P(xj)) , and the odds ratio is given by: 

( ) ( )( )

( ) ( )( )
( ) ( )( )
( ) ( )( )

( )
( )

( )
1 exp '/ 1

exp
exp '1/ 1

i j j ji i

i j
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u u
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− +−
 = = = −
 +−−

x x x βx x

x βx xx x  

 

Thus, it follows that if there are no differences in the unobserved variables (ui = uj or if the unobserved 

variables have no influence on the probability of participation (γ = 0), the odds ratio is one, which implies the 

absence of hidden or unobserved selection biases.  

 

Rosenbaum (2002) derived the following bounds on the odds-ratio that either of the two matched individuals 

will receive treatment: 
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Both matched individuals have the same probability of participating only if exp(γ) = 1. 

If exp(γ) = 2, then individuals who appear to be similar (in terms of xi) could differ intheir odds of receiving 

the treatment by as much as a factor of 2. In this sense, exp(γ) is a measure of the degree of departure from a 

study that is free of hidden bias. 

 

P(xi)/(1− P(xi)) and P(xj)/ (1− P(xj)) could be obtained by introducing covariates simulating hidden bias in the 

propensity score estimation. In this case one can adopt Rosenbaum’s bounds to check the robustness of the 

matching results to departures from the CIA assumption. 

 

 

 

 

 

We can calculate the results of the p-value from Wilcoxon sign-rank tests for the averaged treatment effect on 

the treated while setting the level of hidden bias to a certain value γ, which reflects our assumption about 
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unmeasured heterogeneity or endogeneity in treatment assignment expressed in terms of the odds ratio of 

differential treatment assignment due to an unobserved covariate.  

 

At  eachγ we calculate a hypothetical significance level “p-critical”, which represents the bound onthe 

significance level of the treatment effect in the case of endogenous self-selection into treatment status. 

 

 By comparing the Rosenbaum bounds on treatment effects at different levelsof γ we can assess the strength 

such unmeasured influences would require in order that the estimated treatment effects from propensity score 

matching would have arisen purely through  selection effects. 

 

 

 

 

 

 

 

 

EXAMPLE (gretldata)  
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Rosenbaum Sensitivity Test for Wilcoxon Signed Rank P-Value  

 Unconfounded estimate ....  0  

     γ    Lower bound Upper bound 

   1.0           0       0.0000 

   1.1           0        0.0000 

   1.2           0       0.0000 

   1.3           0        0.0000 

   1.4           0       0.0000 

   1.5           0       0.0004 

   1.6           0       0.0035 

   1.7           0       0.0176 

1.8           0       0.0602 

   1.9           0       0.1512 

   2.0           0       0.2957 

 Note: Gamma is Odds of Differential Assignment To 

 Treatment Due to Unobserved Factors 
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After matching, we may still have covariates that we did not collect data on, observe and match, but 

nonetheless affect the treatment and outcome variable. Sensitivity analysis attempts to address how likely is 

this possibility.  

 

Since only at the gamma of 1.8 the upper bound is 0.0602> 0.05, this is the critical value.  

γ represents the ratio in odds of treatment for 2 subjects with the same observed covariates but a different 

unobserved covariate, and sensitivity analysis looks at how large γ can be before the conclusion of the study 

changes i.e. p-value is larger than 0.05.  

So in this case, one subject needs to be 1.8 times more likely as another to receive the treatment due to an 

unobserved covariate before the study conclusion becomes non-significant. Since this is a large number ofγ (it 

is unlikely to find any unobserved covariate that affects odds of treatment this much) the study is quite robust 

to unobserved treatment.  
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DISCONTINUITY DESIGN (DD) 

 [VEDI IL MANUALE “How do we know if a program made a difference” PAG. 294] 

 

However, a special case that has attracted recent attention occurs when the probability of enrolment into  

treatment changes discontinuously with some continuous variable zi. The variable zi is an observable 

instrument, typically used to determine eligibility. It is, therefore, included in the regressors set of  the 

Selection Model. The discontinuity design estimator (DD) uses the discontinuous dependence of di on zi to 

identify a local average treatment effect even when the instrument does not satisfy the IV assumptions 

discussed above.  

DD relies on a continuous relationship between the instrument zi and all the determinants of the outcome 

except participation in treatment. Any discontinuity in yi as a function of zi is, therefore, attributed to a 

discontinuous change in the participation rate as a function of zi. 

 

As a consequence, treated and nontreated are individuals with values of zi, respectively, above and below the 

threshold (or cut-off point), zc affecting  the participation decision. 

 

However, regression discontinuity design requires that all potentially relevant variables besides the treatment 

variable and outcome variable be continuous at the point where the treatment and outcome discontinuities 
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occur. One sufficient, though not necessary, condition is if the treatment assignment is "as good as random" at 

the threshold for treatment. 

Sharp Design 

Thus the probability of participation changes discontinuously at the treshold zc from zero to one. The 

identification condition with sharp design can be stated as follows: 

 

( ) ( )

( ) ( )

lim 1; 0

lim 1; 1

c

c

i i c
z z

i i c
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→

+

→

= = =

= = =           (DD1) 

 

where, to simplify the notation, P(z-
c ) and (P(z+

c ) represents the limit of the propensity  score (P(di = l| zi) = 

P(zi)) as zi approaches zc, respectively, from below and from above. Both limits are assumed to exist. 

The DD parameter is, in this case: 

 

( ) ( ) ( )| |DD c i c i cz E y z E y z + −= −  

z+
c  and  z-

c ) are the limits of E[yi;| zi] when zi approaches zc from above and below, respectively. DD(zc) 

measures the impact of treatment on a randomly  selected individual with observable characteristics zi just 

above zc. 
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If we now impose this additional assumption: 

( ) ( ) ( )| | |i c i c i cE y z E y z E y z+ −− =  

 

the DD parameter can be more naturally interpreted as being the impact of treatment on a randomly selected 

individual at the threshold point zc: 

 

( ) ( )|DD c i cz E y z =  

 

Fuzzy Design 

 

A fuzzy design occurs when dimensions other than zi, (in particular, unobserved dimensions) also affect 

participation. In the general fuzzy design case, participation and nonparticipation occur on both sides of the 

threshold zc.  Thus, Assumption DD1 needs to be adjusted accordingly: 
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( ) ( )c cP z P z+ −           DD2 

The additional problem here is that only a subpopulation moves treatment status at the discontinuity point and 

the selection of movers is likely to be related with potential outcomes. 

 

Fuzzy DD relies on the following additional local (mean) independence assumption to identify a local  

treatment effect parameter: 

( ) ( )| ; |i iE d z E z =    in a small neighbourhood of zi.  

 

The DD parameter is identified as follows: 
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Then a DD estimator is given by: 
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where y +
 and y −

 are sample averages of the observed outcomes at each side of the  threshold, and ( )ˆ
cP z+

 

and ( )ˆ
cP z−

are estimators of the participation probability at each  side of the threshold. 

A nonparametric version of DD is simple to implement. It only requires running  nonparametric regressions of 

yi and di on zi locally, separately on each side of the discontinuity point. The predicted limits can then be used 

to estimate the impact of  treatment using previous expression of estimator. 
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